A Lagrangean based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures
نویسندگان
چکیده
In this work we present a global optimization algorithm for solving a class of large-scale nonconvex optimization models that have a decomposable structure. Such models are frequently encountered in two-stage stochastic programming problems, engineering design, and also in planning and scheduling. A generic formulation and reformulation of the decomposable models is given. We propose a specialized deterministic branch-and-cut algorithm to solve these models to global optimality, wherein bounds on the global optimum are obtained by solving convex relaxations of these models with certain cuts added to them. These cuts are based on the solutions of the sub-problems obtained by applying Lagrangean decomposition to the original nonconvex model. Two examples are presented to illustrate the efficiency of the proposed method compared to available commercial global optimization solvers that are based on branch and bound.
منابع مشابه
Draft: Global Optimization of Mixed-integer Nonlinear Systems Using Decomposition and Lagrangian Branch-and-cut
The analytical target cascading (ATC) optimization technique for hierarchical systems demonstrates convergence properties only under assumptions of convexity and continuity. Many practical engineering design problems, however, involve a combination of continuous and discrete variables resulting in the development of mixed integer nonlinear programming (MINLP) formulations. While ATC has been ap...
متن کاملSCIP: Global Optimization of Mixed-Integer Nonlinear Programs in a Branch-and-Cut Framework
This paper describes the extensions that were added to the constraint integer programmingframework SCIP in order to enable it to solve convex and nonconvex mixed-integer nonlinearprograms (MINLPs) to global optimality. SCIP implements a spatial branch-and-bound algorithmbased on a linear outer-approximation, which is computed by convex overand underestimationof nonconvex functio...
متن کاملRelaxation and Decomposition Methods
This book is concerned with theory, algorithms and software for solving nonconvex mixed integer nonlinear programs. It consists of two parts. The first part describes basic optimization tools, such as block-separable reformulations, convex and Lagrangian relaxations, decomposition methods and global optimality criteria. The second part is devoted to algorithms. Starting with a short overview on...
متن کاملReformulation-Linearization Methods for Global Optimization
Discrete and continuous nonconvex programming problems arise in a host of practical applications in the context of production planning and control, location-allocation, distribution, economics and game theory, quantum chemistry, and process and engineering design situations. Several recent advances have been made in the development of branch-and-cut type algorithms for mixed-integer linear and ...
متن کاملLaGO: a (heuristic) Branch and Cut algorithm for nonconvex MINLPs
We present a Branch and Cut algorithm of the software package LaGO to solve nonconvex mixed-integer nonlinear programs (MINLPs). A linear outer approximation is constructed from a convex relaxation of the problem. Since we do not require an algebraic representation of the problem, reformulation techniques for the construction of the convex relaxation cannot be applied, and we are restricted to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Global Optimization
دوره 41 شماره
صفحات -
تاریخ انتشار 2008